Strona główna Grupy pl.misc.dieta Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy

Grupy

Szukaj w grupach

 

Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy

Liczba wypowiedzi w tym wątku: 66


« poprzedni wątek następny wątek »

21. Data: 2007-04-21 13:02:25

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: duszołap <g...@i...usun.am.lublin.pl> szukaj wiadomości tego autora

Krystyna*Opty* napisał(a):

> To w końcu o co chodziło w tym badaniu, wytłumacz to iwon(K)o, bardzo
> proszę. Nie wystarczy ciągle powtarzać, że ja nic nie rozumiem.

Prawdę mówiąc ja też nie rozumiem i raczej nie zrozumiem póki ktoś nie
poda pełnego opisu przebiegu badania. W abstrakcie podano, że były dwie
grupy myszy, jedna na diecie tłuszczowej, druga na cukrowej, we
wnioskach skupiono się jednak wyłącznie na grupie tłuszczowej, nie
wiadomo więc jakie były rezultaty odstawienia ulubionego pokarmu w
grupie cukrowej. I tu się pojawia pytanie, czy stres wywołuje
odstawienie tłuszczu (jak sugeruje podsumowanie abstraktu) czy
ulubionego pokarmu w ogóle (jak sugeruje tytuł)?


--dusz.

› Pokaż wiadomość z nagłówkami


Zobacz także


22. Data: 2007-04-21 13:39:12

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: "Jurek" <m...@o...pl> szukaj wiadomości tego autora


Użytkownik "duszołap" <g...@i...usun.am.lublin.pl> napisał w
wiadomości news:f0d291$239$1@nemesis.news.tpi.pl...
> Krystyna*Opty* napisał(a):
>
>> To w końcu o co chodziło w tym badaniu, wytłumacz to iwon(K)o, bardzo
>> proszę. Nie wystarczy ciągle powtarzać, że ja nic nie rozumiem.
>
> Prawdę mówiąc ja też nie rozumiem i raczej nie zrozumiem póki ktoś nie
> poda pełnego opisu przebiegu badania. W abstrakcie podano, że były dwie
> grupy myszy, jedna na diecie tłuszczowej, druga na cukrowej, we wnioskach
> skupiono się jednak wyłącznie na grupie tłuszczowej, nie wiadomo więc
> jakie były rezultaty odstawienia ulubionego pokarmu w grupie cukrowej. I
> tu się pojawia pytanie, czy stres wywołuje odstawienie tłuszczu (jak
> sugeruje podsumowanie abstraktu) czy ulubionego pokarmu w ogóle (jak
> sugeruje tytuł)?
>
Cos mi się zdaje, że to było badanie podobne do tego, które kiedyś
zastosował jeden Rosjanin "rozpracowując" naukowo organizm muchy, i po
wyrwaniu jej wszystkich skrzydeł i ostatniej nogi, i po komendzie "idi" -
mucha nie ruszyła się, napisał w notatniku, że ogłuchła po wyrwaniu
ostatniej nogi.
Pozdrawiam Jurek M.



› Pokaż wiadomość z nagłówkami


23. Data: 2007-04-21 13:52:46

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: "Jeff" <j...@v...pl> szukaj wiadomości tego autora


dyszolap napisala:

> Krystyna*Opty* napisał(a):
>
> > To w końcu o co chodziło w tym badaniu, wytłumacz to iwon(K)o, bardzo
> > proszę. Nie wystarczy ciągle powtarzać, że ja nic nie rozumiem.
>
> Prawdę mówiąc ja też nie rozumiem i raczej nie zrozumiem póki ktoś nie
> poda pełnego opisu przebiegu badania. W abstrakcie podano, że były dwie
> grupy myszy, jedna na diecie tłuszczowej, druga na cukrowej, we
> wnioskach skupiono się jednak wyłącznie na grupie tłuszczowej, nie
> wiadomo więc jakie były rezultaty odstawienia ulubionego pokarmu w
> grupie cukrowej. I tu się pojawia pytanie, czy stres wywołuje
> odstawienie tłuszczu (jak sugeruje podsumowanie abstraktu) czy
> ulubionego pokarmu w ogóle (jak sugeruje tytuł)?

Czego nie rozumiesz? Iwon(K)a w zasadzie dokladnie wyjasnila o co chodzi
w tym artykule.
Nieporozumienie moze wywolywac tylko zmanipulowany tytul, ktory nadano
artykulowi prasowemu, bo orginalny tytul tej pracy naukowej brzmi:

"Decreases in dietary preference produce increased emotionality and risk for
dietary relapse"

http://tinyurl.com/3xh3h4

Byc moze autor polskiego artykulu prasowego korzystal rowniez ze zmanipulowanych
"tlumaczen" w j. ang., a ktore zamieszczono masowo w sieci internetowej na temat
tych badaniach.
W sieci mozna bowiem w tej chwili znalezc informacje o tych badaniach np.pod
takim tytulem, ktory juz kompletnie nie ma nic wspolnego z tekstem orginalnym:

"Changing To A Low-fat Diet Can Induce Stress"

http://www.sciencedaily.com/releases/2007/04/0704180
91945.htm

A tytaj mozna zapoznac sie tekstem orginalnym w celu jednoznacznego wyjasnienia
wszelkich watpliwosci:

http://linkinghub.elsevier.com/retrieve/pii/S0006-32
23(06)01220-0




--
Wysłano z serwisu OnetNiusy: http://niusy.onet.pl

› Pokaż wiadomość z nagłówkami


24. Data: 2007-04-21 14:57:51

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: januszek <j...@p...irc.pl> szukaj wiadomości tego autora

duszołap napisał(a):

>> To w końcu o co chodziło w tym badaniu, wytłumacz to iwon(K)o, bardzo
>> proszę. Nie wystarczy ciągle powtarzać, że ja nic nie rozumiem.

> Prawdę mówiąc ja też nie rozumiem i raczej nie zrozumiem póki ktoś nie
> poda pełnego opisu przebiegu badania.

Chodzi o "Decreases in Dietary Preference Produce Increased Emotionality
and Risk for Dietary Relapse" by Sarah L. Teegarden and Tracy L. Bale,
of the Department of Animal Biology, University of Pennsylvania,
Philadelphia, Pennsylvania. It appears in Biological Psychiatry, Volume
61, Issue 9.

Tu mozna znalezc pelny tekst tej pracy: http://tinyurl.com/yu2lbb

Moim zdaniem autorzy tej pracy twierdza, ze dieta wysokotluszczowa
dziala jak nikotyna, alkohol oraz narkotyki - czyli zupelnie cos
odwrotnego niz nam tu probuje udowodnic Krysia Erewan... Posrednio
znaczy to, ze nasi obecni tu tzw "Optymalni" w zasadzie sa na chaju ;)

j.

› Pokaż wiadomość z nagłówkami


25. Data: 2007-04-21 15:51:57

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: duszołap <g...@i...usun.am.lublin.pl> szukaj wiadomości tego autora

Jeff napisał(a):

>>> To w końcu o co chodziło w tym badaniu, wytłumacz to iwon(K)o, bardzo
>>> proszę. Nie wystarczy ciągle powtarzać, że ja nic nie rozumiem.
>> Prawdę mówiąc ja też nie rozumiem i raczej nie zrozumiem póki ktoś nie
>> poda pełnego opisu przebiegu badania. W abstrakcie podano, że były dwie
>> grupy myszy, jedna na diecie tłuszczowej, druga na cukrowej, we
>> wnioskach skupiono się jednak wyłącznie na grupie tłuszczowej, nie
>> wiadomo więc jakie były rezultaty odstawienia ulubionego pokarmu w
>> grupie cukrowej. I tu się pojawia pytanie, czy stres wywołuje
>> odstawienie tłuszczu (jak sugeruje podsumowanie abstraktu) czy
>> ulubionego pokarmu w ogóle (jak sugeruje tytuł)?
>
> Czego nie rozumiesz?

Pominięcia grupy myszy karmionych dietą wysokowęglowodanową w
podsumowaniu i wnioskach. Czy 'efekt odstawienia' miał takie same skutki
w obu grupach, czy tylko w grupie 'tłuszczowej'?

> A tytaj mozna zapoznac sie tekstem orginalnym w celu jednoznacznego wyjasnienia
> wszelkich watpliwosci:
>
> http://linkinghub.elsevier.com/retrieve/pii/S0006-32
23(06)01220-0

A teraz przeczytaj jeszcze raz co napisałam o braku porównania
zachowania 'grupy cukrowej' i powiedz, jakie to niby wątpliwości
rozwiałeś podając link do abstraktu, który czytałam (tak, po angielsku)
trzy albo i więcej razy. Zauważ, że nawet w słowach kluczowych podanego
przez Ciebie streszczenia występuje 'high fat', nic o 'carbohydrates'.



--dusz.


› Pokaż wiadomość z nagłówkami


26. Data: 2007-04-21 15:53:46

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: duszołap <g...@i...usun.am.lublin.pl> szukaj wiadomości tego autora

januszek napisał(a):

> Moim zdaniem autorzy tej pracy twierdza, ze dieta wysokotluszczowa
> dziala jak nikotyna, alkohol oraz narkotyki - czyli zupelnie cos
> odwrotnego niz nam tu probuje udowodnic Krysia Erewan... Posrednio
> znaczy to, ze nasi obecni tu tzw "Optymalni" w zasadzie sa na chaju ;)

A to by wiele tłumaczyło. ;D


--dusz.

› Pokaż wiadomość z nagłówkami


27. Data: 2007-04-21 17:30:04

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: "Jurek dAq" <g...@g...pl> szukaj wiadomości tego autora


"Jeff" <j...@v...pl> a écrit dans le message de news:
5...@n...onet.pl...
> jurus, napisz jakie ty dostajesz codziennie pastylki, ze tak madrze
> piszesz i
> tak sie zawsze pieknie smiejesz?

no tu jest zasadnicza roznica miedzy nami, Ty faszerowana jestes przy
lekarzy z "psy" w okreslaniu ich specjalnosci, ja zadnych prochow od lat
nielykam , i jestem szczesliwy :)))). Popros twoich opiekunow o inne
lekarstwa (moze mniej "atakujace" mozg?) to moze wreszcie uda ci sie
popatrzyc na swiat bez przeslony z wscieklosci i jadu ?

Jurek


› Pokaż wiadomość z nagłówkami


28. Data: 2007-04-21 17:35:23

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: "Jeff" <j...@v...pl> szukaj wiadomości tego autora

duszolap napisala:

> Jeff napisał(a):

> > Czego nie rozumiesz?

> Pominięcia grupy myszy karmionych dietą wysokowęglowodanową w
> podsumowaniu i wnioskach. Czy 'efekt odstawienia' miał takie same skutki
> w obu grupach, czy tylko w grupie 'tłuszczowej'?

Szkoda, ze nie przeczytalas artykulu ktory podalem pod tym linkiem:

http://www.sciencedaily.com/releases/2007/04/0704180
91945.htm

Zwroc uwage na to zdanie:

"In a study in the May 1st issue of Biological Psychiatry, researchers found
that mice withdrawn from high-fat or high-carbohydrates diets became anxious and
showed changes in their brains indicating higher stress levels."

* Obydwie diety (HF and HC) porownywano do diet standardowych.
Myszy przezywaly stres w obydwu doswiadczeniach.



> > A tytaj mozna zapoznac sie tekstem orginalnym w celu jednoznacznego wyjasnienia
> > wszelkich watpliwosci:

> > http://linkinghub.elsevier.com/retrieve/pii/S0006-32
23(06)01220-0
>
> A teraz przeczytaj jeszcze raz co napisałam o braku porównania
> zachowania 'grupy cukrowej' i powiedz, jakie to niby wątpliwości
> rozwiałeś podając link do abstraktu, który czytałam (tak, po angielsku)
> trzy albo i więcej razy. Zauważ, że nawet w słowach kluczowych podanego
> przez Ciebie streszczenia występuje 'high fat', nic o 'carbohydrates'.


Napisany przez Ciebie tekst, dokladnie przeczytalem.
Szkoda, ze Ty nie przeczytalas tych ktore ja sugerowalem.
Zauwaz, ze nigdzie nie napisalem, ze rozwialem watpliwosci, tylko zaproponowalem
abys sama zapoznala sie z tekstem orginalnym i wyciagnela wlasne wnioski, a nie
polegala na przekazach pochodzacych od osob trzecich, bo te moga byc zmanipulowane.

Podalem nawet przyklad tego typu manipulacji tytulami artykulow, ktore moga nie
miec bezposredniego zwiazku z wynikami badan.

Ponadto slowo kluczowe 'high fat', odnosi sie w tym przypadku scisle do myszy.
Dla myszy "preferred-diet" jest akurat "high-fat foods". Kropka.

Przeczytaj moze jeszcze to:

"Writing in the article, Tracy L. Bale, Ph.D., states, "Our behavioral,
physiologic, biochemical, and molecular analyses support the hypothesis that
preferred diets act as natural rewards and that withdrawal from such a diet can
produce a heightened emotional state.

Once deprived of their preferred diet, mice would overcome their natural
aversion to bright environments to obtain the high-fat foods, even when standard
food was available.

The authors conclude, "These results strongly support the hypothesis that an
elevated emotional state produced after preferred-diet reduction provides
sufficient drive to obtain a more preferred food in the face of aversive
conditions, despite availability of alternative calories in the safer
environment. Our results may suggest that, similar to the case of an individual
who is in withdrawal from a rewarding substance, these mice effectively are
displaying risk-taking behavior to obtain a highly desirable substance,
supporting the powerful rewarding aspects of the HF food."


* To ze wysokotluszczowe, ketogeniczne diety moga u niektorych ludzi wywolywac
pewne anormalne stany psychiczne, to juz raz tu tlumaczylem.
Stany te z punktu widzenia biochemii, sa anologiczne do tych, ktore obserwuje
sie w alcoholic ketoacidosis :

Przeczytaj moze ten watek:

http://tinyurl.com/3yaw7n


--
Wysłano z serwisu OnetNiusy: http://niusy.onet.pl

› Pokaż wiadomość z nagłówkami


29. Data: 2007-04-21 17:37:12

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy [uwaga: długie!]
Od: Marcin 'Cooler' Kuliński <m...@p...gazeta.blah> szukaj wiadomości tego autora

duszołap pisze:

>>To w końcu o co chodziło w tym badaniu, wytłumacz to iwon(K)o, bardzo
>>proszę. Nie wystarczy ciągle powtarzać, że ja nic nie rozumiem.
>
> Prawdę mówiąc ja też nie rozumiem i raczej nie zrozumiem póki ktoś nie
> poda pełnego opisu przebiegu badania.

Sorry za balagan, ale z domu mam dostep tylko do czystego tekstu:

Original article
Decreases in Dietary Preference Produce Increased Emotionality and Risk
for Dietary Relapse

Sarah L. Teegarden, Tracy L. Bale , Email Address
Department of Animal Biology, University of Pennsylvania, Philadelphia,
Pennsylvania.

Received 3 March 2006; revised 19 September 2006; accepted 19 September 2006
Background

Obesity is a modern health epidemic, with the overconsumption of highly
palatable, calorically dense foods as a likely contributor. Despite the
known consequences of obesity, behavioral noncompliance remains high,
supporting the powerful rewarding properties of such foods. We
hypothesized that exposure to preferred diets would result in an
amelioration of stress responsivity via activation of reward pathways
that would be reversed during dietary withdrawal, increasing the risk
for relapse and treatment failure.
Methods

Mice were exposed to preferred diets high in fat or carbohydrates for 4
weeks and then were withdrawn to house chow. Behavioral, physiologic,
and biochemical assays were performed to examine changes in stress and
reward pathways.
Results

These studies revealed significant changes in arousal and anxiety-like
behaviors, limbic corticotropin-releasing factor expression, and
expression of reward-related signaling molecules in response to the
highly preferred high-fat diet that was reversed by withdrawal. In a
dietary-reinstatement model, mice withdrawn from the high-fat diet
endured an aversive environment to gain access to the preferred food.
Conclusions

Exposure to a highly preferred diet high in fat reduces stress
sensitivity, whereas acute withdrawal from such a diet elevates the
stress state and reduces reward, contributing to the drive for dietary
relapse.


Key Words: Anxiety; diet; high fat; obesity; stress; withdrawal.

Article Outline

Methods and Materials

Animals

Dietary Preferences

Preferred-Diet Reduction

Physiologic Measurements

Behavioral Analyses

Open-field Test

Marble-burying Test

Elevated Plus-maze

Biochemistry and Gene Expression

In Situ Hybridization

Western Blot Analyses

Reinstatement Model

Results

Dietary Preferences

Physiologic Responses to Dietary-preference Reduction

Behavioral Analyses

Biochemistry and Gene Expression

Reinstatement Model

Discussion
References

Nearly 65% of the adult population currently is classified as overweight
or obese. Health complications associated with obesity include heart
disease, hypertension, and diabetes, making obesity the second leading
cause of death in the United States. Although the source of this
escalation in obesity is complex, changes in diet likely have played a
role as calorically dense foods high in fat and carbohydrates have
become readily available ( Stein and Colditz 2004), and consumption of
these foods can be a major contributor to the development of obesity
(Blundell et al. 1996; Green et al. 1994 [ Blundell et al 1996, Green et
al 1994]).

Despite the association between poor diet and negative health
consequences, long-term behavioral compliance is a key complication in
obesity treatment. A likely contributor to this resistance is the
rewarding properties of palatable foods. Food consumption is controlled
in part by the ventral striatum and produces reward stimulation by
releasing dopamine (DA) in the nucleus accumbens (NAc), similarly to
other rewarding substances (Hajnal et al. 2004; Kelley 2004; Levine et
al. 2003; Smith 2004 [ Hajnal et al 2004, Kelley 2004, Levine et al
2003, Smith 2004]). Direct activation of these pathways can itself
promote the overconsumption of energy-dense foods (Colantuoni et al.
2001; De Araujo and Rolls 2004; Fantino et al. 1986; Marks-Kaufman and
Kanarek 1981, 1990; Wang et al. 2004 [ Colantuoni et al 2001, De Araujo
and Rolls 2004, Fantino et al 1986, Marks-Kaufman and Kanarek 1981,
Marks-Kaufman and Kanarek 1990, Wang et al 2004]). Human imaging studies
have illustrated the specific activation of emotional and reward-sensing
brain regions with oral fat application ( De Araujo and Rolls 2004) and
have shown that single neuronal populations within these regions may be
responsible for the rewarding aspects associated with high-fat foods (
Rolls 2004). Further, positron emission tomography imaging in obese
patients has revealed alterations in dopamine receptor expression
similar to those found in drug-addicted subjects ( Wang et al. 2004),
supporting the potent rewarding capacity of palatable foods.

On the basis of these studies, we surmise that obesity may be a disease
with some addiction-like properties. As such, consumption of preferred
diets would lead to activation of brain reward pathways and a reduction
in stress state. Withdrawal of rewarding substances is associated with
increased stress state, and this is thought to contribute to
reinstatement of drug-seeking behavior ( Sinha et al. 2006). It then
follows that dietary restriction, modeled here as a reduction in dietary
preference, may produce increases in emotionality and stress state.
Stress has been shown to play a role in macronutrient choices, leading
to increased consumption of palatable, energy-dense foods ( Pecoraro et
al. 2004), which in turn has been suggested to alleviate stress and
decrease central corticotropin-releasing factor (CRF) expression
(Dallman et al. 2003; Kreek and Koob 1998 [ Dallman et al 2003, Kreek
and Koob 1998]). Thus, the development of an increased emotional state
after reduction in preferred diet may further promote drive for reward.

Although previous work has begun to provide insight into the rewarding
aspects of foods high in fat and carbohydrates, the homeostatic
perturbations occurring after reductions in such preferred diets that
may lead to dietary relapse have not been examined. Our studies here
compare the physiologic, behavioral, biochemical, and molecular
alterations occurring after chronic exposure to and acute withdrawal
from preferred diets high in either fat or carbohydrates in mice and
examine how these alterations may contribute to relapse to
preferred-diet consumption.
Methods and Materials
Animals

Male mice (C57Bl/6:129; 10-12 wks old) were group-housed on a 12:12-hour
light-dark cycle with food and water available ad libitum (except where
otherwise noted). This strain was used as part of our breeding colony
and reflects a more diverse genetic background. Diets high in fat (HF)
or in carbohydrate (HC) were from Research Diets, Inc. (New Brunswick,
New Jersey). The HF diet contained 4.73 kcal/g and consisted of (by
kcal): 7% corn starch, 10% maltodextrin, 17% sucrose, and 39% lard. The
HC diet contained 3.85 kcal/g and consisted of 31% cornstarch, 3%
maltodextrin, 35% sucrose, and 6% lard. Both diets contained 20% casein,
.3% l -cystine, 6% soybean oil, and equal amounts of vitamins and
minerals. House chow was obtained from Purina Lab Diet (St. Louis,
Missouri) and contained 4.00 kcal/g, consisting of 28% protein, 12% fat,
and 60% carbohydrate.
Dietary Preferences

To establish initial dietary preferences, individually housed mice were
given preweighed pellets of house chow and of HC or HF diet in the
bottom of the cage (n = 5). Pellets were weighed and replaced with a
fresh set each day for 5 days. After comparisons of new diet versus
chow, mice were examined for preferences between HF and HC diets for 5
days. For this comparison, two preweighed pellets of each diet were
placed on the cage floor. Pellets were removed, weighed, and replaced
with fresh pellets each morning. Bedding was thoroughly examined, and
all food matter was removed. Data were analyzed by using Student's t
test to compare consumption of the different diets.
Preferred-Diet Reduction

To compare the precipitation of a heightened emotional state after
chronic preferred-diet exposure and reduction, group-housed mice (n =
12) were maintained for 4 weeks on either the HF or HC diets, as
described. Our study used a 4-week exposure to avoid the significant
metabolic changes that result after longer exposures ( Bale et al.
2003). After 4 weeks on preferred diets, one group of mice was withdrawn
by replacement with their regular chow (n = 7). For these groups, the
following comparisons were made: body-weight measurement, marble-burying
test, and elevated plus-maze testing. For further analyses, additional
studies were compared with new groups of mice (HC, HF withdrawn: n = 7;
HC, HF nonwithdrawn: n = 10) for the following comparisons: open-field
test, gene-expression levels, and biochemical studies. Behavioral tests
were conducted 24 hours, 48 hours, and 1 week after withdrawal, as
described in Behavioral Analyses. A separate group of mice (n = 5) was
maintained on house chow and underwent identical testing.
Physiologic Measurements

Mice were weighed every other day for 1 week, before and after diet
withdrawal. Mice remained group-housed throughout these studies, because
individually housing mice could impact our results as a result of
changes in metabolic rate and circulating corticosterone and
catecholamine levels ( Plaut and Friedman 1982). Consequently, we were
not able to measure individual food intake. However, in a separate group
of individually housed mice (n = 5), daily caloric intake for house chow
and both the HC and HF groups before and after withdrawal was measured.
Data were analyzed by using Student's t test to compare consumption
between groups. A two-way analysis of variance (ANOVA) was used to
compare weight loss by group and time after withdrawal.
Behavioral Analyses
Open-field Test

Mice were exposed to the open-field test 24 hours after withdrawal and
compared with nonwithdrawn and house-chow groups. The open-field
apparatus consisted of a white Plexiglas box 50 × 50 × 22 cm with
sixteen 12 × 12-cm squares drawn on the floor. Testing was conducted
with 120 lux in the center of the box, 2-4 hours after lights out. Each
mouse was placed in the center of the box to initiate the 5-min test.
Mice were scored for total line crossings, center crossings, and fecal
boli production by an investigator blind to treatment group. All data
were analyzed by using a two-way ANOVA to compare diet and withdrawal
condition with Fisher's PLSD post hoc test. The open-field test has been
validated as a measure of activity and anxiety-like behaviors, because
treatment with anxiolytic drugs increases time spent in the center
squares and decreases fecal boli production ( Bale et al. 2000).
Marble-burying Test

To measure anxiety-like behaviors 48 hours after withdrawal, mice were
exposed to the marble-burying test and compared with nonwithdrawn and
house-chow groups. The marble-burying box consisted of a 20 × 40 × 15 cm
mouse cage containing 5 cm of bedding. Twelve uniformly sized marbles
were evenly distributed around the cage. Each mouse was placed in a new
cage for 30 min. The number of marbles buried was counted at the end of
the test. A marble was considered buried if it was at least 2/3 covered
with bedding. Testing was conducted 2-4 hours after lights out. The test
was scored by an investigator blind to treatment groups. Data were
analyzed by using a two-way ANOVA to compare diet and withdrawal groups.
Marble burying has been validated as a measure of anxiety-like behavior
in mice ( Chaki et al. 2003).
Elevated Plus-maze

The elevated plus-maze was conducted as described elsewhere ( Bale et
al. 2000), 1 week after withdrawal. The 5-min test was conducted 6-8
hours after lights-on with 12 lux in the open arms. To initiate the
test, a mouse was placed in the center of the maze facing an open arm.
Mice were scored by an investigator blind to treatment group, for time
spent in open and closed arms, and number of entries into each arm. All
data were analyzed by using a two-way ANOVA to compare diet and
withdrawal groups with Fisher's PLSD post hoc test.
Biochemistry and Gene Expression

To examine biochemical and molecular changes after diet exposure and
withdrawal, mice were killed at 24 hours or 1 week after withdrawal from
diets or immediately after 4-week diet exposure (including house-chow
controls), and the brains were removed and divided sagittally into two
hemispheres. One hemisphere was quickly frozen to be sectioned for in
situ hybridization. The remaining half was dissected into subregions for
Western blot analysis. All brain tissue was stored at -80°C.
In Situ Hybridization

Brains were cut on a cryostat at 20 ?m and mounted on slides (SuperFrost
Plus, Fisher Scientific, Hampton, New Hampshire). Hybridization was
performed using a 35 S-labeled probe specific to CRF, as described
elsewhere ( Bale et al. 2000). Slides were incubated overnight at 55°C,
washed at 62°C, and apposed to film for 5 days. Image analysis was
performed by using the IPLab version 3.9 imaging system for Macintosh
(Scanalytics, Rockville, Maryland). A region of interest was drawn
around the central nucleus of the amygdala (CeA), as determined by atlas
reference ( Paxinos and Franklin 2001), to determine optical density for
CRF mRNA expression by an investigator blind to treatment groups. The
same region-of-interest tool was used for each section. Background was
subtracted from each density measurement by using a region just outside
each tissue section on the film. Two measurements were taken per mouse
and were averaged before analysis by using a two-way ANOVA.
Western Blot Analyses

Biochemical analyses were performed as described elsewhere ( Bale et al.
2003). The portion of the striatum dissected to produce the Western
blots was the rostral area containing primarily the NAc. All protein was
run at 30 ?g per lane. Antibodies used were phosphorylated cyclic
adenosine monophosphate response element binding protein (pCREB) Ser 133
1:200 (Cell Signaling Technology, Beverly, Massachusetts), FosB 1:200
(Santa Cruz Biotechnology, Santa Cruz, California), and ?-actin 1:1000
(Sigma, St. Louis, Missouri). For all analyses, n = 3 per group. All
blots were stripped and reprobed for ?-actin to control for any transfer
or sample-loading errors. Full-length FosB was distinguished from ?FosB
by size. The full-length protein weighs approximately 55 kDa, whereas
?FosB weighs 35-37 kDa ( Nestler et al. 2001). Densitometric analyses
were performed by using IPLab. A region of interest was drawn around one
band on the film, and an identical region was used to measure densities
for each subsequent band on that blot. Raw data comparisons were made
only within each blot. Statistical analyses were performed by using a
one-way ANOVA to compare diet groups.
Reinstatement Model

On the basis of the results obtained after dietary withdrawal showing an
elevated emotional state after removal of the HF diet, we developed a
behavioral model to compare possible dietary-reinstatement risk
associated with withdrawal. In this study, mice were placed on HF or
low-fat (LF, 12% fat by calories) diet for 4 weeks (n = 10). The LF diet
was included in these studies as a control for novel dietary changes.
After 4 weeks of diet, half of the HF and LF mice were withdrawn from
diet and returned to house chow (HF-W and LF-W). The remaining mice were
maintained on their respective diets before testing. On the test day,
all groups were food-deprived for 6 hours before testing. This
deprivation was conducted during the light cycle to minimize impact on
normal food intake and metabolism while still provoking food motivation
during the testing period. Testing was conducted 1-2 hours before lights
out, 5 days after withdrawal, by using a rectangular box in which the
light (aversive) side contained 400 lux of light and a fan on a mild
setting, whereas the dark (preferred) side contained an opaque cover,
creating 40 lux of light and no fan ( Bale et al. 2000). The two sides
were connected by a doorway, allowing free movement between chambers. An
HF pellet was placed in the light side, and a pellet of house chow was
placed in the dark side. To have access to the HF food, a mouse must
override its preference to remain predominantly on the dark side. The
mouse was placed in the light side of the box to initiate the 10-min
test. An investigator blinded to treatment groups performed scoring for
time spent on each side of the box and for the number of transitions
between the two sides. Data were analyzed by using a two-way ANOVA for
diet and withdrawal status with Fisher's PLSD post hoc test. Control
mice exposed to the box without food present spent 143.3 ? 17.9 sec in
the light compartment during a 600-sec test.
Results
Dietary Preferences

To compare macronutrient preferences, we examined daily consumption of
the HF or HC food when presented with house chow. Mice showed a clear
and consistent preference for consuming these diets over their house
chow (HC, p < .001; HF, p = .001; Figure 1 A and B). No significant
differences were observed in volume of food consumed; mice given the HC
diet consumed 3.39 ? .06 g/d, and those in the HF group consumed 3.48 ?
.22 g/d. To compare preferences between these diets, HF and HC pellets
were presented together. Mice showed a significant preference for the HF
over the HC diet (p < .001; Figure 1 C).

Figure 1: Diets high in fat (HF) or carbohydrate (HC) were preferred
over standard house chow. (A). Mice given a choice between house chow
and the HC diet prefer HC, as measured by calories consumed. (B) Mice
given a choice between house chow and HF diet prefer HF, as measured by
calories consumed. (C) Mice given a choice between HC and HF prefer HF,
as measured by calories consumed. All data are presented as the average
? SEM. ***p < .001.

Physiologic Responses to Dietary-preference Reduction

To compare the production of a stress state after removal of a preferred
diet high in fat or carbohydrates, mice were examined after withdrawal
from macronutrient diets. After 4 weeks on the HF or HC diets, no
overall differences were found in body weights or daily caloric intake
between groups ( Figure 2 A and B). After withdrawal, both groups
significantly reduced their overall caloric intake, whereas no
differences in this reduction were detected between diets ( Figure 2 B).
Because weight loss is a sign of stress that is associated with
reductions in rewarding stimuli, we compared body weights after
withdrawal of the preferred diet. Mice withdrawn from both diets showed
weight loss 24 hours after withdrawal. However, the HC-W body weight
plateaued by 48 hours after withdrawal, whereas the HF-W group continued
to lose weight 1 week after the dietary change ( Figure 2 C).

Figure 2: Mice exposed to high-fat (HF) or high-carbohydrate (HC) diets
for 4 weeks showed no significant differences between diet groups in (A)
end body weights. (B) No differences were found between groups for daily
caloric intake while on the preferred diets or after diet withdrawal and
return to house chow. (C) Mice on HC and HF diets lose weight after
withdrawal to house chow. Mice withdrawn from HF diet continue to lose
weight 1 week after withdrawal, *p < .05, significantly different
compared with weight before withdrawal. All data are presented as the
average ? SEM.

Behavioral Analyses

To evaluate mice for evidence of altered emotionality, changes in
arousal and anxiety-like behaviors were measured after diet exposure and
withdrawal. In the open-field test, there was a significant interaction
between diet and withdrawal on total lines crossed (F = 12.74, p < .01),
with HF-W mice displaying a state of hyperarousal ( Figure 3 A). In
addition, there was a significant effect of withdrawal in this test for
production of fecal boli (F = 10.54, p < .01) that post hoc comparison
showed to be specific to the HF diet, with the HF-W mice producing
significantly greater fecal boli in the open field, indicative of
increased anxiety-like responses, compared with HC-W and HC-nonwithdrawn
groups ( Figure 3 B). Analysis of center crossings in the open field for
these mice revealed no difference in the percentage of crossings into
the center (chow, 8.8 ? 1.05%; HC, 7.7 ? .34%; HF, 6.9 ? .54%; HC-W, 9.3
? .66%; and HF-W, 6.4 ? .59%).

Figure 3: Preferred diets altered stress responsivity in novel
environments, and this effect appeared reversed during acute withdrawal
in tests measuring arousal and anxiety-like behaviors. (A) Interaction
between diet and withdrawal state resulted in a significant increase in
arousal in an open arena 24 hours after withdrawal (W/d) from the highly
preferred high-fat diet (HF), compared with chow or the
high-carbohydrate (HC) diet. (B) Fecal boli production in the novel open
arena was reduced in preferred-diet groups. Withdrawal from the highly
preferred HF diet produced a significant increase in fecal boli 24 hours
after withdrawal, an indication of increased anxiety-like behavior. (C)
In a marble-burying test for active stress-responsive behaviors 48 hours
after withdrawal from diets, no significant differences were found for
the total number of marbles buried during a 30-min test between diet
groups. However, there is a trend for the highly preferred HF diet to
reduce burying behavior, and for HF withdrawal to reverse this effect.
All data are presented as the average ? SEM. *p < .01, interaction of
diet and withdrawal, **p < .01, main effect of withdrawal specific to HF
diet.


In a second test to examine stress-responsive behaviors, we used a
marble-burying paradigm 48 hours after dietary withdrawal. The total
number of marbles buried was compared for each group ( Figure 3 C). Mice
on the HF-preferred diet showed a reduction in marbles buried compared
with chow controls, but this difference did not reach significance (p =
.12).

One week after withdrawal from preferred diets, mice were compared in an
elevated plus-maze for anxiety-like behaviors. There was a main effect
of withdrawal on total arm entries (F = 6.1, p < .05), and post hoc
tests showed this effect to be specific to the HF group, in keeping with
the increased arousal seen in the open field (chow, 19.8 ? .7; HC, 13.0
? 2.3; HF, 11.2 ? 1.9; HC-W, 16.4 ? 1.7; and HF-W, 17.8 ?1.6). There
were no significant differences found for the percentage of entries into
the open arms (chow, 13.9 ? 5.3%; HC, 22.7 ? 14.0%; HF, 29.5 ? 7.0%;
HC-W, 16.1 ? 3.8%; and HF-W, 18.6 ? 2.7%).
Biochemistry and Gene Expression

To elucidate possible biochemical and molecular mechanisms that may
elicit the physiologic and behavioral responses detected during dietary
manipulation, brains from mice exposed to and withdrawn from the highly
preferred diets and chow were examined. In situ hybridization was
performed to investigate levels of CRF mRNA in the CeA. Mice not
withdrawn from HC or HF diet after 4 weeks showed no significant
differences in levels of CRF message in the CeA ( Figure 4), although we
detected a trend toward decreased CRF in mice on the more preferred HF
diet relative to chow (p = .10). Mice on the HF diet showed a
significant increase in CRF mRNA 24 hours after withdrawal (p < .05;
Figure 4). No differences were found in CRF mRNA expression in the CeA 1
week after withdrawal between chow, HC, and HF diet groups and between
HC and HF withdrawal groups (data not shown).

Figure 4: Expression of corticotropin-releasing factor (CRF) appeared
reduced by high-fat (HF) diet exposure and then was significantly
elevated during acute withdrawal from the highly preferred HF diet.
Comparisons were made for CRF expression in the central nucleus of the
amygdala (CeA) in house chow, nonwithdrawn (non w/d) high-carbohydrate
(HC) and HF diets, and 24 hours after withdrawal (w/d) HF and HC groups.
Arrows indicate CRF mRNA signal in the CeA by in situ hybridization. All
data are presented as the average ? SEM, *p < .05.


Because rewarding substances are known to increase dopamine signaling in
the ventral striatum, we conducted biochemical analyses of downstream
signaling molecules in the reward pathway. After 4 weeks of diet, there
were no significant differences in levels of pCREB in the striatum (
Figure 5 A). A significant reduction in striatal pCREB was detected 24
hours after withdrawal in mice withdrawn from preferred diets, compared
with mice maintained on chow (p = .01; Figure 5 B). This reduction in
striatal pCREB is maintained in HF-W mice, at 1 week after withdrawal (p
< .01), whereas levels are similar to chow-maintained mice in mice
withdrawn from HC diet ( Figure 5 C). Expression of pCREB also was
compared in the hippocampus and prefrontal cortex, in which no
significant differences were found between diet groups (data not shown).

Figure 5: Western blot analysis revealed substantial biochemical changes
in possible downstream reward signals related to diet preference status
in ventral striatal tissue after diet withdrawal. (A) Striatal levels of
phosphorylated cyclic adenosine monophosphate response element binding
protein (pCREB) were not different between house-chow (Ch),
high-carbohydrate (HC), and high-fat (HF) diet groups after 4 weeks on
diet (nonwithdrawn). The apparent reduction seen in the HC group was not
significant (p = .26). (B) Twenty-four hours after withdrawal, striatal
pCREB levels were significantly decreased in HC- and HF-diet mice, **p <
.01. (C) One week after withdrawal, striatal pCREB remains decreased in
HF diet, but not in HC diet-withdrawn mice relative to chow, **p < .01.
(D) Striatal ?FosB is significantly elevated in mice exposed for 4 wks
to HF diet, compared to HC diet and chow. Expression of ?FosB was no
longer different between diet groups at (E) 24 hours or (F) 1 week after
withdrawal *p < .05. All data are presented as the average ? SEM.


?FosB, a truncated splice variant of FosB with a longer half-life than
full-length FosB, is induced after prolonged reward-pathway activation (
McClung and Nestler 2003). After 4 weeks on diet, HF-diet mice show
significantly higher levels of ?FosB (p < .05; Figure 5 D). Twenty-four
hours and 1 week after withdrawal, no differences were found in striatal
?FosB levels between diet groups ( Figure 5 E and F).
Reinstatement Model

To examine the behavioral drive for dietary reinstatement after
withdrawal from a highly preferred HF diet, we developed a model in
which mice were required to endure an open, brightly lit environment to
reinstate an HF diet despite the availability of house chow (less
palatable calories) in a less aversive setting. In a 10-min test, HF-W
mice spent significantly more time on the bright side in the presence of
an HF pellet (p < .05) than did the mice in the HF nonwithdrawn group or
in either of the LF groups ( Figure 6 A). To control for possible
locomotor differences between groups, total transitions between bright
and dark sides were measured. No differences were found ( Figure 6 B).
Food consumed in the test also was recorded. High-fat diet mice that did
not experience withdrawal consumed .04 ? .02 g of HF diet, whereas mice
withdrawn from HF 5 days before the test consumed .22 ? .10 g of HF diet
(p = .12). Mice previously exposed to the LF diet did not consume HF
diet during the test.

Figure 6: In a potential model of dietary reinstatement 5 days after
withdrawal, high-fat (HF) diet-withdrawn (HF-W) mice spent more time in
and consumed more of an HF diet in an aversive environment than did
nonwithdrawn or novel-diet controls. (A) The HF-W mice spent
significantly more time in an aversive environment in the presence of
the highly preferred HF diet than did HF nonwithdrawn (HF) mice, or
compared with either of the low-fat diet control groups (withdrawn
[LF-W] or nonwithdrawn [LF]). (B) No significant differences in
locomotion were detected between groups, as determined by the number of
transitions made between the light and dark sides of the apparatus.
Inset shows apparatus setup, in which a piece of the highly preferred HF
diet was placed in the light side and a piece of house chow was
available in the dark side. Aversive stimuli were placed above the light
side (fan and bright light). An open door allowed free movement between
sides (double arrow). All data are presented as the average ? SEM. *p <
.05 compared with all other groups.

Discussion

Because behavioral compliance is a major impediment in obesity
treatment, we have compared the alterations in stress state that are
precipitated by a reduction in dietary preference. Obesity, like
addiction, occurs after habits that both persist and strengthen despite
clear negative consequences ( Volkow and Wise 2005). Therefore,
elucidating the physiologic and emotional transitions that occur after
reductions in preferential dietary intake may provide insight for
greater success in obesity treatment.

Results from our initial dietary preference comparisons of the HC and HF
diets found that both were significantly preferable over standard house
chow. However, when the two were presented together, these mice showed a
greater overall preference for the HF over HC diet. During this study,
we found that mice significantly increased their total caloric intake
when the preferred diet was available and then reduced their calories
when returned to the less preferred house chow. These results show that
mice demonstrate an inclination similar to that of human beings for
caloric overconsumption when presented with more desirable foods, making
this a useful behavioral model in the study of obesity development.

To examine the emotional impact of preferred diet exposure versus
withdrawal from a preferred diet, mice were exposed to the HF or HC
diets for 4 weeks and then withdrawn by a return to their house chow.
Because weight change is a classic physiologic response to a heightened
stress state associated with reductions in rewarding stimuli ( Bailey et
al. 2004), body weights were compared after withdrawal. Both diet groups
showed weight loss 24 and 48 hours after the return to house chow.
Further, HF-W mice continued to lose weight 1 week after withdrawal. It
is likely that the initial reduction in body weight after withdrawal is
attributable to the reduced caloric intake. However, because both groups
consumed similar calories before withdrawal and then reduced to the same
caloric intake after withdrawal, the protracted weight loss of the HF
group may support an additional emotional or physiological impact
resulting from withdrawal from the more preferred diet. These results
suggest a possible preference threshold that is required to produce more
profound physiologic changes produced by the HF but not HC diet.

In addition to physiologic challenges to homeostasis, alterations in
stress state, as indicated by changes in emotional affect and behavior (
Koob 1999), were examined during preferred diet exposure and after
withdrawal. Specifically, arousal and maladaptive responses have been
shown to be affected by the presence and removal of rewarding stimuli (
Sarnyai 1998). We detected changes in arousal and anxiety-like behaviors
that corresponded to preferred diet status. At 24 hours after
withdrawal, mice were tested in the open field. The data indicate that
consumption of preferred diets may lead to decreased anxiety-like
behavior. Withdrawal of preferred diets then leads to states of arousal
and emotionality that are similar to or greater than those observed on
chow alone, and these results especially are apparent for mice exposed
to the HF diet. Mice withdrawn from an HF diet showed significantly
increased locomotor activity and fecal boli production in a novel
environment. In addition, comparisons of marble-burying behavior 48
hours after withdrawal showed distinct differences in behavioral
responses. Marble burying is a relatively new behavioral test that has
been developed and validated by using anxiolytic drugs and that
typically is concerned with the total number of marbles buried (Millan
et al. 2004; Shimazaki et al. 2004; Spooren et al. 2000 [ Millan et al
2004, Shimazaki et al 2004, Spooren et al 2000]). Mice that are exposed
to HF display behavior suggestive of decreased marble burying, and this
effect is reversed when the mice are withdrawn to chow. As with the
outcome of the open field, these results support a preferred-diet-driven
reduction in stress and a heightened sensitivity when mice are withdrawn
to house chow.

These results indicate that preferred diets lead to decreased stress
responsivity and to a corresponding increase in the relative stress
state after withdrawal from a highly preferred HF diet. To elucidate the
possible underlying mechanisms that may elicit the responses detected
during diet change, we compared expression levels of limbic CRF.
Increased CRF is hypothesized to induce the elevation in anxiety that is
produced during withdrawal from many drugs of abuse and to be the
driving force behind drug reinstatement and relapse ( Weiss et al.
2001). Fitting with our hypothesis, mice on the HF diet showed an
apparent reduction in CRF, whereas HF-W mice displayed significant
elevations in CRF 24 hours after withdrawal. These results are
supportive of an increased stress state and correlate well with the
increased arousal and anxiety-like behaviors detected in this group.
Further, the acute time course in which withdrawal from HF diet elevated
CRF expression closely matches that reported during withdrawal from
drugs of abuse (Rodriguez de Fonseca et al. 1997; Zhou et al. 2003 [
Rodriguez de Fonseca et al 1997, Zhou et al 2003]).

The mesolimbic DA pathway is a key aspect of the reward neurocircuitry (
Koob 1999). Recent studies have shown alterations in DA
neurotransmission or DA receptor expression in individuals who are
predisposed to addiction and obesity, supporting a correlation between
DA pathways and the rewarding aspects of palatable foods (Davis et al.
2004; Wang et al. 2004 [ Davis et al 2004, Wang et al 2004]). In our
study, aspects of dopamine signaling in the ventral striatum after diet
manipulation were examined. A downstream action of dopamine receptor D1
activation is phosphorylation of the transcription factor CREB, altering
expression of genes related to reward and addiction (Blendy and
Maldonado 1998; Nestler 2004 [ Blendy and Maldonado 1998, Nestler
2004]). We found significant reductions in pCREB 24 hours after
withdrawal from both preferred diets that were maintained for at least 1
week in mice that were withdrawn from the highly preferred HF diet.
These biochemical changes appeared to be specific to the striatum,
because no differences in pCREB were detected in the hippocampus or
cortex, supporting a likely reduction in reward input that correlates
with the increased stress state found in these mice and with the timing
reported in withdrawal from other rewarding substances (Dudman et al.
2003; Li et al. 2003; Pluzarev and Pandey 2004 [ Dudman et al 2003, Li
et al 2003, Pluzarev and Pandey 2004]). Notably, although withdrawal of
preferred diets led to a decrease in pCREB levels in both HC-W and HF-W
groups at 24 hours, only the HF-W group showed a continued reduction at
1 week. This distinction suggests that although both diets are
rewarding, there may be a reward threshold for the highly preferred HF
diet that leads to a more prolonged response to withdrawal. Because
activation of signal-transduction pathways culminating at pCREB is not
limited to DA receptors in the ventral striatum, we cannot rule out
other possible influences on this system during dietary change.

Another family of signaling molecules important in transmission of
reward signals is the immediate early gene products Fos-Jun proteins,
including FosB. There are extensive interactions between these family
members and downstream mediators of reward. One truncated splice variant
of FosB with a longer half-life than full-length FosB, ?FosB, is induced
after prolonged reward activation ( McClung and Nestler 2003) and
recently has been shown to be involved in food motivation ( Olausson et
al. 2006). In our model, a 4-week exposure to preferred diets resulted
in a significant increase in ?FosB levels in the HF group. These results
again implicate a calorically dense, highly preferred food as a natural
reward that influences expression of molecules involved in long-term
adaptation ( Nestler et al. 2001). Because ?FosB is no longer elevated
24 hours after withdrawal in the HF group, these results may point to a
differential regulation of this protein between natural rewards and
drugs of abuse ( Perrotti et al. 2004).

Our behavioral, physiologic, biochemical, and molecular analyses support
the hypothesis that preferred diets act as natural rewards and that
withdrawal from such a diet can produce a heightened emotional state. We
hypothesized that such a shift would result in an orchestration of
neural signals, leading to an increased drive for reinstatement of
palatable, energy-dense foods to alleviate the symptoms of stress (
Dallman et al. 2003). To assess this behavior, we developed a
reinstatement paradigm based on accessibility to the highly preferred HF
diet in an aversive arena. Mice withdrawn from the highly preferred HF
diet spent significant time in the open, bright environment in proximity
to the HF pellet, despite the availability of house chow on the dark
side. These results strongly support the hypothesis that an elevated
emotional state produced after preferred-diet reduction provides
sufficient drive to obtain a more preferred food in the face of aversive
conditions, despite availability of alternative calories in the safer
environment. Our results may suggest that, similar to the case of an
addict who is in withdrawal from a rewarding substance, these mice
effectively are displaying risk-taking behavior to obtain a highly
desirable substance, supporting the powerful rewarding aspects of the HF
food.

Although numerous studies have begun to address the rewarding properties
and drives for preferred foods and their macronutrient (fat and
carbohydrate) components (Imaizumi et al. 2000; Welch et al. 1996; Zhang
et al. 1998 [ Imaizumi et al 2000, Welch et al 1996, Zhang et al 1998]),
the emotional state after withdrawal from such rewarding stimuli has not
been addressed. Results from our study suggest that a preferred diet
that is high in fat can activate reward-related circuitry in the brain
and effectively blunt or reduce stress sensitivity. Furthermore, removal
of a highly preferred diet leads to an increased stress state and
maladaptive coping responses that increase the drive to obtain palatable
food as a reward source in the face of possible negative consequences.
These results may suggest new directions in the development of more
successful therapies for obesity prevention and treatment as we begin to
understand and appreciate not only the potent reward signals associated
with preferred dietary intake but also the powerful negative cues
produced during their withdrawal.

This work was supported by The University of Pennsylvania Diabetes
Center DK019525, The University of Pennsylvania Center for Molecular
Studies in Digestive and Liver Disease DK050306, and The University
Research Foundation. SLT is supported by the Systems and Integrative
Biology training grant.

We thank K. Carlin for technical support. TLB is a shareholder of
Neurocrine Biosciences.
Address reprint requests to Tracy L. Bale, Ph.D., Department of Animal
Biology, 201E Vet, 6046, University of Pennsylvania, 3800 Spruce Street,
Philadelphia, PA 19104-6046
References
Bailey et al 2004 Bailey A., Davis L., Lesscher H.M., Kelly M.D.,
Ledent C., Hourani S.M., Kitchen I., Enhanced morphine withdrawal and
micro-opioid receptor G-protein coupling in A2A adenosine receptor
knockout mice, J Neurochem, Volume: 88, (2004), pp. 827--834
Bale et al 2003 Bale T.L., Anderson K.R., Roberts A.J., Lee K.F.,
Nagy T.R., Vale W.W., Corticotropin-releasing factor
receptor-2-deficient mice display abnormal homeostatic responses to
challenges of increased dietary fat and cold, Endocrinology, Volume:
144, (2003), pp. 2580--2587
Bale et al 2000 Bale T.L., Contarino A., Smith G.W., Chan R., Gold
L.H., Sawchenko P.E., et al. Mice deficient for corticotropin-releasing
hormone receptor-2 display anxiety-like behaviour and are hypersensitive
to stress, Nat Genet, Volume: 24, (2000), pp. 410--414
Blendy and Maldonado 1998 Blendy J.A., Maldonado R., Genetic analysis
of drug addiction: The role of cAMP response element binding protein, J
Mol Med, Volume: 76, (1998), pp. 104--110 Bibliographic Page Full text
Blundell et al 1996 Blundell J.E., Lawton C.L., Cotton J.R.,
Macdiarmid J.I., Control of human appetite: Implications for the intake
of dietary fat, Annu Rev Nutr, Volume: 16, (1996), pp. 285--319
Chaki et al 2003 Chaki S., Hirota S., Funakoshi T., Suzuki Y.,
Suetake S., Okubo T., et al. Anxiolytic-like and antidepressant-like
activities of MCL0129
(1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1
-yl)ethyl]-4-[4-(2-met
hoxynaphthalen-1-yl)butyl]piperazine), a novel and potent nonpeptide
antagonist of the melanocortin-4 receptor, J Pharmacol Exp Ther, Volume:
304, (2003), pp. 818--826 CrossRef
Colantuoni et al 2001 Colantuoni C., Schwenker J., McCarthy J., Rada
P., Ladenheim B., Cadet J.L., et al. Excessive sugar intake alters
binding to dopamine and mu-opioid receptors in the brain, Neuroreport,
Volume: 12, (2001), pp. 3549--3552 CrossRef
Dallman et al 2003 Dallman M.F., Pecoraro N., Akana S.F., La Fleur
S.E., Gomez F., Houshyar H., et al. Chronic stress and obesity: A new
view of "comfort food", Proc Natl Acad Sci U S A, Volume: 100, (2003),
pp. 11696--11701 CrossRef
Davis et al 2004 Davis C., Strachan S., Berkson M., Sensitivity to
reward: Implications for overeating and overweight, Appetite, Volume:
42, (2004), pp. 131--138 Bibliographic Page Full text
De Araujo and Rolls 2004 De Araujo I.E., Rolls E.T., Representation
in the human brain of food texture and oral fat, J Neurosci, Volume: 24,
(2004), pp. 3086--3093 CrossRef
Dudman et al 2003 Dudman J.T., Eaton M.E., Rajadhyaksha A., Macías
W., Taher M., Barczak A., et al. Dopamine D1 receptors mediate CREB
phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1,
J Neurochem, Volume: 87, (2003), pp. 922--934 CrossRef
Fantino et al 1986 Fantino M., Hosotte J., Apfelbaum M., An opioid
antagonist, naltrexone, reduces preference for sucrose in humans, Am J
Physiol, Volume: 251, (1986), pp. R91--R96
Green et al 1994 Green S.M., Burley V.J., Blundell J.E., Effect of
fat- and sucrose-containing foods on the size of eating episodes and
energy intake in lean males: Potential for causing overconsumption, Eur
J Clin Nutr, Volume: 48, (1994), pp. 547--555
Hajnal et al 2004 Hajnal A., Smith G.P., Norgren R., Oral sucrose
stimulation increases accumbens dopamine in the rat, Am J Physiol Regul
Integr Comp Physiol, Volume: 286, (2004), pp. R31--R37
Imaizumi et al 2000 Imaizumi M., Takeda M., Fushiki T., Effects of
oil intake in the conditioned place preference test in mice, Brain Res,
Volume: 870, (2000), pp. 150--156 Bibliographic Page Full text
Kelley 2004 Kelley A.E., Ventral striatal control of appetitive
motivation: Role in ingestive behavior and reward-related learning,
Neurosci Biobehav Rev, Volume: 27, (2004), pp. 765--776 Bibliographic
Page Full text
Koob 1999 Koob G.F., Stress, corticotropin-releasing factor, and drug
addiction, Ann N Y Acad Sci, Volume: 897, (1999), pp. 27--45 CrossRef
Kreek and Koob 1998 Kreek M.J., Koob G.F., Drug dependence: Stress
and dysregulation of brain reward pathways, Drug Alcohol Depend, Volume:
51, (1998), pp. 23--47 Bibliographic Page Full text
Levine et al 2003 Levine A.S., Kotz C.M., Gosnell B.A., Sugars:
Hedonic aspects, neuroregulation, and energy balance, Am J Clin Nutr,
Volume: 78, (2003), pp. 834S--842S
Li et al 2003 Li J., Li Y.H., Yuan X.R., Changes of phosphorylation
of cAMP response element binding protein in rat nucleus accumbens after
chronic ethanol intake: Naloxone reversal, Acta Pharmacol Sin, Volume:
24, (2003), pp. 930--936
Marks-Kaufman and Kanarek 1981 Marks-Kaufman R., Kanarek R.B.,
Modifications of nutrient selection induced by naloxone in rats,
Psychopharmacology (Berl), Volume: 74, (1981), pp. 321--324 CrossRef
Marks-Kaufman and Kanarek 1990 Marks-Kaufman R., Kanarek R.B., Diet
selection following a chronic morphine and naloxone regimen, Pharmacol
Biochem Behav, Volume: 35, (1990), pp. 665--669 CrossRef
McClung and Nestler 2003 McClung C.A., Nestler E.J., Regulation of
gene expression and cocaine reward by CREB and DeltaFosB, Nat Neurosci,
Volume: 6, (2003), pp. 1208--1215 CrossRef
Millan et al 2004 Millan M.J., Brocco M., Papp M., Serres F., La
Rochelle C.D., Sharp T., et al. S32504, a novel naphtoxazine agonist at
dopamine D3/D2 receptors: III: Actions in models of potential
antidepressive and anxiolytic activity in comparison with ropinirole, J
Pharmacol Exp Ther, Volume: 309, (2004), pp. 936--950 CrossRef
Nestler 2004 Nestler E.J., Molecular mechanisms of drug addiction,
Neuropharmacology, Volume: 47, Issue: suppl 1 (2004), pp. 24--32
Bibliographic Page Full text
Nestler et al 2001 Nestler E.J., Barrot M., Self D.W., DeltaFosB: A
sustained molecular switch for addiction, Proc Natl Acad Sci U S A,
Volume: 98, (2001), pp. 11042--11046 CrossRef
Olausson et al 2006 Olausson P., Jentsch J.D., Tronson N., Nestler
E.J., Taylor J.R., dFosB in the nucleus accumbens regulates
food-reinforced instrumental behavior and motivation, J Neurosci,
Volume: 26, (2006), pp. 9196--9204
Paxinos and Franklin 2001 Paxinos G., Franklin K.B.J., The Mouse
Brain in Stereotaxic Coordinates, 2nd ed. (2001), Academic Press, San
Diego, CA.
Pecoraro et al 2004 Pecoraro N., Reyes F., Gomez F., Bhargava A.,
Dallman M.F., Chronic stress promotes palatable feeding, which reduces
signs of stress: Feedforward and feedback effects of chronic stress,
Endocrinology, Volume: 145, (2004), pp. 3754--3762 CrossRef
Perrotti et al 2004 Perrotti L.I., Hadeishi Y., Ulery P.G., Barrot
M., Monteggia L., Duman R.S., Nestler E.J., Induction of deltaFosB in
reward-related brain structures after chronic stress, J Neurosci,
Volume: 24, (2004), pp. 10594--10602 CrossRef
Plaut and Friedman 1982 Plaut S.M., Friedman S.B., Stress, coping
behavior and resistance to disease, Psychother Psychosom, Volume: 38,
(1982), pp. 274--283
Pluzarev and Pandey 2004 Pluzarev O., Pandey S.C., Modulation of CREB
expression and phosphorylation in the rat nucleus accumbens during
nicotine exposure and withdrawal, J Neurosci Res, Volume: 77, (2004),
pp. 884--891
Rodriguez de Fonseca et al 1997 Rodriguez de Fonseca F., Carrera
M.R., Navarro M., Koob G.F., Weiss F., Activation of
corticotropin-releasing factor in the limbic system during cannabinoid
withdrawal, Science, Volume: 276, (1997), pp. 2050--2054 CrossRef
Rolls 2004 Rolls E.T., The functions of the orbitofrontal cortex,
Brain Cogn, Volume: 55, (2004), pp. 11--29 Bibliographic Page Full text
Sarnyai 1998 Sarnyai Z., Neurobiology of stress and cocaine
addiction: Studies on corticotropin-releasing factor in rats, monkeys,
and humans, Ann N Y Acad Sci, Volume: 851, (1998), pp. 371--387 CrossRef
Shimazaki et al 2004 Shimazaki T., Iijima M., Chaki S.,
Anxiolytic-like activity of MGS0039, a potent group II metabotropic
glutamate receptor antagonist, in a marble-burying behavior test, Eur J
Pharmacol, Volume: 501, (2004), pp. 121--125 Bibliographic Page Full text
Sinha et al 2006 Sinha R., Garcia M., Paliwal P., Kreek M.J.,
Rounsaville B.J., Stress-induced cocaine craving and
hypothalamic-pituitary-adrenal responses are predictive of cocaine
relapse outcomes, Arch Gen Psychiatry, Volume: 63, (2006), pp. 324--331
CrossRef
Smith 2004 Smith G.P., Accumbens dopamine mediates the rewarding
effect of orosensory stimulation by sucrose, Appetite, Volume: 43,
(2004), pp. 11--13 Bibliographic Page Full text
Spooren et al 2000 Spooren W.P., Vassout A., Neijt H.C., Kuhn R.,
Gasparini F., Roux S., et al. Anxiolytic-like effects of the
prototypical metabotropic glutamate receptor 5 antagonist
2-methyl-6-(phenylethynyl)pyridine in rodents, J Pharmacol Exp Ther,
Volume: 295, (2000), pp. 1267--1275
Stein and Colditz 2004 Stein C.J., Colditz G.A., The epidemic of
obesity, J Clin Endocrinol Metab, Volume: 89, (2004), pp. 2522--2525
CrossRef
Volkow and Wise 2005 Volkow N.D., Wise R.A., How can drug addiction
help us understand obesity?, Nat Neurosci, Volume: 8, (2005), pp.
555--560 CrossRef
Wang et al 2004 Wang G.J., Volkow N.D., Thanos P.K., Fowler J.S.,
Similarity between obesity and drug addiction as assessed by
neurofunctional imaging: A concept review, J Addict Dis, Volume: 23,
(2004), pp. 39--53 CrossRef
Weiss et al 2001 Weiss F., Ciccocioppo R., Parsons L.H., Katner S.,
Liu X., Zorrilla E.P., et al. Compulsive drug-seeking behavior and
relapse: Neuroadaptation, stress, and conditioning factors, Ann N Y Acad
Sci, Volume: 937, (2001), pp. 1--26
Welch et al 1996 Welch C.C., Kim E.M., Grace M.K., Billington C.J.,
Levine A.S., Palatability-induced hyperphagia increases hypothalamic
Dynorphin peptide and mRNA levels, Brain Res, Volume: 721, (1996), pp.
126--131 Bibliographic Page Full text
Zhang et al 1998 Zhang M., Gosnell B.A., Kelley A.E., Intake of
high-fat food is selectively enhanced by mu opioid receptor stimulation
within the nucleus accumbens, J Pharmacol Exp Ther, Volume: 285, (1998),
pp. 908--914
Zhou et al 2003 Zhou Y., Spangler R., Ho A., Kreek M.J., Increased
CRH mRNA levels in the rat amygdala during short-term withdrawal from
chronic "binge" cocaine, Brain Res Mol Brain Res, Volume: 114, (2003),
pp. 73--79 Bibliographic Page Full text

› Pokaż wiadomość z nagłówkami


30. Data: 2007-04-21 18:28:17

Temat: Re: Przejście na dietę ubogą w tłuszcz może wywoływać silne stresy
Od: "Krystyna*Opty*" <K...@a...spam.pl> szukaj wiadomości tego autora


Użytkownik "Iwon(k)a" <i...@p...onet.pl> napisał w wiadomości
news:f0ctb4$llv$1@news.onet.pl...
> "Krystyna*Opty*" <K...@a...spam.pl> wrote in message
> news:f0codf$933$1@news.onet.pl...
>>> i dlatego tytul orginalu brzmial jednak inaczej.....
>>
>> A jak brzmiał?
>
> tak jak zacytowalam. zamieszcze to raz jeszcze
>
> "Decreases in _Dietary Preference_ Produce Increased Emotionality and
> Risk for Dietary Relapse "

Prosiłam, abyś to przetłumaczyła na język polski. Nie potrafisz?

>>Czyżby PAP źle przetłumaczył istotę badania i źle
>> sformulował tytuł? (patrz: tytuł wątka = tytuł artykułu).
>
> ktokolwiek to tlumaczyl, tytul przetlumaczyl zle.

Więc przetłumacz to poprawnie, ok?

> a tlumaczenie oparte bylo tylko na streszczeniu pelnego tekstu.

Czyli ZNASZ pełny tekst? Podrzuć go, proszę.

>>> nigdzie nie jest napisane, iz myszki cukrojady nie mialy stresu
>>> krysiu. nie dopowiadaj tego czego nie ma. myszki po prostu wola
>>> tlyszczyk, ot co. dla nich to byla "highly preferred diet".
>>
>> Tak, to znaczy: "wysoko preferowana dieta". Myszki wolą tłustą dietę,
>> ot co. Co ci się nie zgadza?
>
> mi sie wszystko zgadza krysiu. roznimy sie jedynie zrozumieniem
> istoty tego badania. ty nawet wiesz jak to bylo z cukrami, mimo, ze
> nie czytalas badania.....

Ale ty przecież czytałaś i doskonale tę istotę rozumiesz, więc bardzo
cię proszę, przetłumacz dokładnie i poprawnie CAŁY abstrakt, ja też chcę
go poprawnie rozumieć. Dlaczego nie chcesz go przetłumaczyć? Przecież
się nie przemęczysz, tekst jest bardzo krótki, to dla ciebie drobiazg
a mi wiele wyjaśni, ok?

A może ktoś z grupy znający angielski zechce go przetłumaczyć, bo
Iwon(K)a jakoś bardzo się przed tym broni chociaż jest taka biegła
w angielskim, bardzo proszę!

>>>>> bo orginalny tytul brzmi "Decreases in _Dietary Preference_
>>>>> Produce Increased Emotionality and Risk for Dietary Relapse "
>>
>> Proszę, przetłumacz to zdanie.
>
> przetlumacze podkreslenie "dietetyczne preferencje" a nie "fat"
> czyli tluszcz.

A czy ja widzę w tym zdaniu fat (tłuszcz)???
A dlaczego nie chcesz przetłumaczyć CAŁEGO zdania?

>>>> "ulubiony" pokarm odnosi się do pokarmu TŁUSTEGO, iwon(K)o, DO
>>>> TŁUSTEGO.
>>>
>>> w przypadku myszy.....(jest "highly preferred")
>>
>> Tak, w przypadku myszy jest "wysoko preferowana". W czym problem?
>
> w tym, ze:
> "Grupa myszy, którym zamieniono dietę wysokowęglowodanową na
> standardową nie odczuła dyskomfortu, czyli myszy nie odczuły różnicy
> w JAKOŚCI pokarmu. Nie dziwne więc, że nie doznały stresu po utracie
> diety wysokowęglowodanowej... :)"
>
> "porównywanie tłuszczu w diecie do szkodliwych narkotyków czy
> alkoholu - to czyjaś perfidna manipulacja, nie pierwsza i nie ostatnia
> zresztą... :[ "
>
> czyli, ze przeoczylas istote tego badania skupiajac sie tylko na
> slowie "tluszcz". szkoda. przemykaja Ci przed oczami teskty,
> a w nich cala masa zawrtych ciekawcyh informacji, ktorych nie
> jestes w stanie wychwycic.

Iwon(K)o, jak zwykle dużo piszesz o tym, co _JA_ rozumiem, zamiast dużo
pisać o tym, co _TY_ rozumiesz... pisz NA TEMAT, a nie na MÓJ temat.
A skoro mi "przemykaja przed oczami teskty, a w nich cala masa zawrtych
ciekawcyh informacji, ktorych nie jestem w stanie wychwycic", to
BARDZO CIĘ PROSZĘ, PRZETŁUMACZ na język polski TEN KRÓTKI ABSTRAKT,
i wszystko będziemy rozumiały TAK SAMO, i JEDNOZNACZNIE (może...)
i już nic mi nie umknie, ok? :)
----------------------------------------------------
--------Cytat:
Decreases in dietary preference produce increased emotionality and risk
for dietary relapse.

Department of Animal Biology, University of Pennsylvania, Philadelphia,
Pennsylvania.

BACKGROUND: Obesity is a modern health epidemic, with the
overconsumption of highly palatable, calorically dense foods as a likely
contributor. Despite the known consequences of obesity, behavioral
noncompliance remains high, supporting the powerful rewarding properties
of such foods. We hypothesized that exposure to preferred diets would
result in an amelioration of stress responsivity via activation of
reward pathways that would be reversed during dietary withdrawal,
increasing the risk for relapse and treatment failure. METHODS: Mice
were exposed to preferred diets high in fat or carbohydrates for 4 weeks
and then were withdrawn to house chow. Behavioral, physiologic, and
biochemical assays were performed to examine changes in stress and
reward pathways. RESULTS: These studies revealed significant changes in
arousal and anxiety-like behaviors, limbic corticotropin-releasing
factor expression, and expression of reward-related signaling molecules
in response to the highly preferred high-fat diet that was reversed by
withdrawal. In a dietary-reinstatement model, mice withdrawn from the
high-fat diet endured an aversive environment to gain access to the
preferred food. CONCLUSIONS: Exposure to a highly preferred diet high in
fat reduces stress sensitivity, whereas acute withdrawal from such a
diet elevates the stress state and reduces reward, contributing to the
drive for dietary relapse.
----------------------------------------------------
----Koniec cytatu.

>>> bo myszki wolaly tluste, ale to nie ma nic wspolnego czy to tluszcz
>>> czy to cos innego.
>>
>> A gdzie to wyczytałaś, że nie o tłuszcz w diecie chodzi, a o coś
>> innego?
>
> min w tym
> "Decreases in _Dietary Preference_ Produce Increased Emotionality and
> Risk for Dietary Relapse (....)
> Despite the known consequences of obesity, behavioral noncompliance
> remains high, supporting the powerful rewarding properties of such
> foods(....) Mice were exposed to preferred diets high in fat _or_
> carbohydrates for 4 weeks and then were withdrawn to house chow.
> (....)
> Behavioral, physiologic, and biochemical assays were performed to
> examine changes in stress and reward pathways.

Dlaczego nie chcesz tego abstraktu konkretnie przetłumaczyć, co?
Przecież wiesz, że słowa miewają wiele znaczeń, i nietrudno o błędne
tłumaczenie. Wiesz też, że ja nie jestem biegła w angielskim w
odróżnieniu od ciebie, więc?... Dlaczego nie chcesz tego abstraktu
przetłumaczyć? Jaki masz problem?

>>> nie o to w tym badaniu chodzilo (dletego porownano to z
>>> narkotykami, czy tez alkholem- a ty bidulku tak sie niepotrzebnei
>>> zdenerwowalas, ze jakies manipulacje. nie manipulacje, bo nie o
>>> tluszczyk chodzilo.
>>
>> Nie o tłuszczyk??????? 8)
>> Ty masz jednak problem z rozumowaniem czytanego tekstu. Przeczytaj
>> jeszcze raz polskie tłumaczenie PAP, bo się już pogubiłaś:
>> http://portalwiedzy.onet.pl/1522274,10486,info.html
>> A jeśli uważasz, że źle to przetłumaczyli, to masz szansę im to
>> wytknąć choćby w komentarzach pod artykułem.
>
> a ty dalej swoje. juz napisalam o co chodzi. i w tym poscie i w
> innym.

Jeszcze raz -
ty już swoimi słowami wystarczająco mi "wytłumaczyłaś"... najwyraźniej
nie dorastam do głębi twoich wyjaśnień... ;)
JA CHCĘ JUŻ TYLKO KONKRETNE PRZETŁUMACZENIE TEGO ABSTRAKTU,
_BEZ_ dorabiania własnych wniosków. OK?
Czy potrafisz to przetłumaczyć? Czy dalej będziesz się migać?

> co do wytykania- Krysiu zawsze docieram do orginalu, bo tlumaczenia
> przez tlumaczy czesto wolaja o pomste do nieba, po drugie tlumaczeniem
> objeto tylko abstract a nie full tekst,

O tak, ja bardzo proszę o tłumaczenie tego abstraktu.
A jeśli masz dostęp do całego tekstu to bardzo proszę, podrzuć mi, bo ja
jakoś nie mogę znaleźć takowego...(???) ok?

> po trzecie w orginale mowa o diecie tlusczzowej _or_ weglowodanowej,
> jest tiwec traktowane wymiennie.

Czy mogłabyś pisać bardziej czytelnie? Co konkretnie oznacza wg ciebie
mowa o jednej "lub" drugiej diecie?

> w abstract nie wspominaja o cukrach, z jakiegos poowodu (byc moze
> nawet z tego, ze "or" oznacza wymienne wartosci)

Abstrakt nie wspomina o cukrach?
Więc skąd u ciebie te słodyczowo-czekoladowe wnioski? I ty mi zarzucasz
swobodę we wnioskowaniu nt. tego badania?

> i poki nie zobacze co sie stalo z grupa ktora ("or") jadla cukry to
nie mam nawet najmniejszego prawa wyciagac wnioskow takich jakie
> wyciagbelas Ty.

Więc skąd u ciebie te słodyczowo-czekoladowe wnioski?

> co wiecej, poniewaz niestety zafikswoalas sie na tym tluszczu, tak
bardzo nie mozesz zrozumiec istoty jaka chca przekazac w wypowiedzi,
> kiedy tluszcz porownywany jest to min alkoholu.

Nie takie głupoty nałukowcom się zdarzają... ;>
A nie słyszałaś o uzależnieniu od słodyczy?

> podejrzewasz namipulacje. ale to manipulacja nie jest. jak sie
> oderwiesz od tego tluszczu to zobaczysz tez to samo.

Znowu DUŻO napisałaś, ale nie to, na co czekam. Nie baw się w OCENIANIE
MNIE, nie pisz mi co JA rozumiem a czego nie widzę itp. Przedstaw jasne,
czytelne konkrety i argumenty na temat przeprowadzonego badania i
wyniku, wszak dokładnie znasz szczegóły badania, a mnie to umyka... ;)

>>> to zwykly, logiczny wniosek. napisany zreszta tu
>>> Decreases in dietary preference produce increased emotionality and
>>> risk for dietary relapse.
>>
>> Przetłumacz to, proszę.
>
> zmnieszenia (w diecie) skladnikow, ktore sie preferuje (lubi jesc)
> zwieksza stres i ryzyko niepowodzenia tej diety.

Co w tym dziwnego??? Czy TAKI był cel badania? Przecież dla WSZYSTKICH
jest to oczywiste, że każdy żywy organizm pozbawiony "ulubionego"
pokarmu doznaje frustracji, i nie trzeba w tym celu robić badań. Innymi
słowy - taki truizm nie mógł być celem badania... :)
Sądzę też, że nie bez powodu zestawiono owe dwie skrajnie różne diety:
wysokotłuszczową i wysokowęglowodanową.

> ...jesli ktos lubi np slodycze, to jesli sie te slodycze wyelimunuje w
> diecie, dlugo ta osoba czekolady sobie nie bedzie odmawiac,
> co wiecej stanie sie bardziej nerwowa, i bedzie w stresie.

Konkretnie - czy myszy karmiono czekoladą lub innymi słodyczami?

> to samo dotyczy
> tluszczy jesli sie lubi, i dlatego uznaje sie, ze te skladniki diety
> (jakiekolwiek
> sie lubi- cukry,czy tlyszcze ) pwooduja te same objawy wycofania w
> ukladzie limbycznym (czyli odpowiedzialnym za emocje) jakie powoduje
> alhokol czy narkotyki. dlatego narkoman, alkoholik, czlowiek
> uzaleznoony od jedzenia (bo jest otyly) bedzie wykazywalam podobne
> zachowania po odebraniu mu ulubionej potrawy (narkotyku, alkoholu)

Ale w KONKLUZJI napisano wyraźnie o stresie myszy pozbawionych "smacznej
TŁUSTEJ diety", a nie o stresie myszy pozbawionych słodyczy, czy
czekolady, więc kto tu dorabia swoje własne wnioski???

>>> sorry, ale ludzie lubia cukry. szczegolnie te proste.
>>
>> No i co z tego, że lubią? Mówię o tym, dlaczego tyją po odstawieniu
>> odchudzającej diety, a nie o tym, co lubią.
>
> nie. tutaj badano problem czemu mimo, ze ludzie otyli wiedza jak
> otylosc szkodzi wciaz nie moga wytrzymac na dietach odchudzajacych.
> tak jak alkoholik, czy palacz....

? Alkoholik, czy palacz nie mogą wytrzymać na dietach odchudzających? ;)
Nawet nie potrafisz poprawnie sformułować swojej myśli... ;)

Wieloletni optymalni akurat doskonale WIEDZĄ dlaczego odchudzający się
ponownie tyją po skończeniu odchudzającej diety :)

>> A jak ty rozumiesz? Możesz to wytłumaczyć? Czy tylko stać cię na
>> pisanie, że ja nie rozumiem tego co czytam.
>
> juz napisalam.
> pisalam tez, ze ostatnio znow potwierdza sie, iz jedzenie jest
> "nakotykiem".

Generalnie to ŻYCIE jest narkotykiem ;)

> osoby ktore byly baaardzo otyle, i poddano je operacji zmniejszenia
> zoladka, nie mogly juz jesc jak przed operacaja, ale wpadaly w inne
> uzaleznienia. w ich ukladzie limbicznym pojawialy sie substancje,
> ktore
> czynily ich ludzmi na "glodzie" - takie osoby wpadaja w inny nalog.
> juz nie jedzenia, bo fizycznie nie moga jesc, ale alkoholu, kupowania
> itp powaznie. jest to problem psychiczny. i o tym byla mowa w badaniu.

Problem polega na tym, że hipoteza badaczy, którzy oczekiwali iż myszy
pozbawione jakiejkolwiek diety, do jakiej były wcześniej
przyzwyczajone wpadną w taki sam stres i na diecie wysokotłuszczowej i
na diecie węglowodanowej, nie sprawdziła się, bo okazało się, że myszy
pozbawione LEPSZEJ (smaczniejszej=tłustej, kalorycznej diety) przeżywały
WIĘKSZY dyskomfort (stały się nawet odważniejsze) niż myszy
przyzwyczajone do diety węglowodanowej, wyraźnie o tym napisano w
KONKLUZJI.

Czekam na tłumaczenie abstraktu i na cały angielski tekst nt. tego
badania.

Krystyna
--
bo myszki wolaly tluste, ale to nie ma nic wspolnego
czy to tluszcz czy to cos innego. iwon(K)a

› Pokaż wiadomość z nagłówkami


 

strony : 1 . 2 . [ 3 ] . 4 ... 7


« poprzedni wątek następny wątek »


Wyszukiwanie zaawansowane »

Starsze wątki

diety "glodowe" na kongresie ginekologicznym w Paryzu
czego to ludziska nie wymysla :) dieta-astro
Rakotworcze warzywa
Badania porownujace efekty roznych diet
malo soli i tluszczu

zobacz wszyskie »

Najnowsze wątki

Prasa do oleju na domowy użytek
niedobory skł. mineralnych a alergie skórne
Sekret Odchudzania z Pasją
Darmowe Mp3 Discopolo 2015 i premiery
Re: Solution Manual Switching and Finite Automata Theory, 3rd Ed by Kohavi, K. Jha

zobacz wszyskie »