Strona główna Grupy pl.sci.psychologia Robakks gada ze zdumionym o 1'0

Grupy

Szukaj w grupach

 

Robakks gada ze zdumionym o 1'0

Liczba wypowiedzi w tym wątku: 183


« poprzedni wątek następny wątek »

31. Data: 2010-02-06 20:05:45

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "zdumiony" <z...@j...pl> szukaj wiadomości tego autora

Użytkownik "Robakks" <R...@g...pl> napisał w wiadomości
news:hkk2vt$guv$1@inews.gazeta.pl...
> Punkt podstawowy to +0 = 1/N = 1/oo = 1/Alef0 = '1
> Inne punkty są większe lub mniejsze, ale niezerowe.
> "Punkty zerowe" mają nazwę BRAKpunkty i występują
> w geometrii klasycznej.

Dlaczego nie używasz BRAKpunktów które są punktami prawdziwymi ale odcinki długości
1/oo = 1/Alef0 gdzie u Ciebie symbole Alef0 i oo oznaczają wielkość skończoną.

> Otrzymałeś wynik fałszywy bo nie rozróżniasz zera arytmetycznego
> od zera geometryznego.

Wszystko się zgadza, sam powiedziałeś że 1'1 to 1/0; czy chodziło o zero geometryczne
które jest większe od arytmetycznego?

>> Jeżeli mamy 1/n i n dąży do nieskończoności do 1/n dąży do zera.
> a) 1/oo = 0
> b) 1/oo > 0
> Wybierz i uzasadnij.
> Robakks

Nie można dzielić przez zero i przez nieskończoność, zamiast tego można mówić o
dążeniu do nieskończoności i do zera.

› Pokaż wiadomość z nagłówkami


Zobacz także


32. Data: 2010-02-06 21:01:56

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "Robakks" <R...@g...pl> szukaj wiadomości tego autora

"zdumiony" <z...@j...pl>
news:hkki2n$3tu$1@news.onet.pl...
> "Robakks" <R...@g...pl>
> news:hkk2vt$guv$1@inews.gazeta.pl...

>> a) 1/oo = 0
>> b) 1/oo > 0
>> Wybierz i uzasadnij.
>> Robakks

> Nie można dzielić przez zero i przez nieskończoność, zamiast tego
> można mówić o dążeniu do nieskończoności i do zera.

Jaką częścią połprostej oo jest odcinek jednostkowy 1
Ile to jest:
1 do oo = 1 : oo = 1/oo
Czy JEDEN z nieskończoności to zero czy więcej?
Edward Robak* z Nowej Huty
~>°<~
miłośnik mądrości i nie tylko :)

› Pokaż wiadomość z nagłówkami


33. Data: 2010-02-07 12:26:12

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "zdumiony" <z...@j...pl> szukaj wiadomości tego autora

Użytkownik "Robakks" <R...@g...pl> napisał w wiadomości
news:hkklc6$p13$1@inews.gazeta.pl...
> Jaką częścią połprostej oo jest odcinek jednostkowy 1
> Ile to jest:
> 1 do oo = 1 : oo = 1/oo
> Czy JEDEN z nieskończoności to zero czy więcej?
> Edward Robak* z Nowej Huty

W matematyce działania powinno wykonywać się ostrożnie, dlatego nie ma dzielenia
przez zero,lepiej też nie dzielić przez nieskończność. Możemy obliczyć granicę 1/n
przy n dążącym do nieskończności,wtedy ta granica wynosi zero.
Czym różni się zero arytmetyczne od geometrycznego, czy mówiąć że 1'1 = 1/zero miałeś
na myśli zero geometryczne?

› Pokaż wiadomość z nagłówkami


34. Data: 2010-02-07 12:39:52

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "Robakks" <R...@g...pl> szukaj wiadomości tego autora

"zdumiony" <z...@j...pl>
news:hkmbh5$uq$1@news.onet.pl...
> "Robakks" <R...@g...pl>
> news:hkklc6$p13$1@inews.gazeta.pl...

>> Jaką częścią połprostej oo jest odcinek jednostkowy 1
>> Ile to jest:
>> 1 do oo = 1 : oo = 1/oo
>> Czy JEDEN z nieskończoności to zero czy więcej?
>> Edward Robak* z Nowej Huty

> W matematyce działania powinno wykonywać się ostrożnie, dlatego
> nie ma dzielenia przez zero,lepiej też nie dzielić przez nieskończność.
> Możemy obliczyć granicę 1/n przy n dążącym do nieskończności,wtedy
> ta granica wynosi zero.
> Czym różni się zero arytmetyczne od geometrycznego, czy mówiąć
> że 1'1 = 1/zero miałeś na myśli zero geometryczne?

Do każdej liczby całkowitej "c" można dołączyć część ułamkową 0,(9)
a więc liczba całkowita o nazwie oo po dodaniu części ułamkowej
jest o 1 większa
~~~~~~~~~
oo,(9) > oo
~~~~~~~~~
Nie pytałem Ciebie co wolno a czego nie wolno w teorii, którą
nazywasz "matematyka". Pytałem o proporcję:
Czy 1 z nieskończoności ma wielkość ZERO czy większą.
Kwadrat o powierzchni 1 [cm^] zawiera nieskończoną ilość
odcinków o długości 1 [cm] tworzących jego pole.
Pytanie jest proste:
Czy 1 [cm] / 1 [cm^2] ma wielkość ZERO czy więcej od zera?
Robakks
*°"˝'´¨˘`˙?^:;~>¤<×÷-.,˛¸

› Pokaż wiadomość z nagłówkami


35. Data: 2010-02-07 12:48:35

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "zdumiony" <z...@j...pl> szukaj wiadomości tego autora

Użytkownik "Robakks" <R...@g...pl> napisał w wiadomości
news:hkmcap$20l$1@inews.gazeta.pl...
> Do każdej liczby całkowitej "c" można dołączyć część ułamkową 0,(9)
> a więc liczba całkowita o nazwie oo po dodaniu części ułamkowej
> jest o 1 większa

Dobrze że zgadzasz się że 0,(9) = 1
ale oo nie jest liczba całkowitą.
> ~~~~~~~~~
> oo,(9) > oo
> ~~~~~~~~~
oo+1 = oo


> Nie pytałem Ciebie co wolno a czego nie wolno w teorii, którą
> nazywasz "matematyka". Pytałem o proporcję:
> Czy 1 z nieskończoności ma wielkość ZERO czy większą.

Dąży do zera.

> Kwadrat o powierzchni 1 [cm^] zawiera nieskończoną ilość
> odcinków o długości 1 [cm] tworzących jego pole.
> Pytanie jest proste:
> Czy 1 [cm] / 1 [cm^2] ma wielkość ZERO czy więcej od zera?
> Robakks

1 [cm] / 1 [cm^2] = 1 [cm^-1]

› Pokaż wiadomość z nagłówkami


36. Data: 2010-02-07 13:04:07

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "Robakks" <R...@g...pl> szukaj wiadomości tego autora

"zdumiony" <z...@j...pl>
news:hkmcr0$44k$1@news.onet.pl...
> "Robakks" <R...@g...pl>
> news:hkmcap$20l$1@inews.gazeta.pl...

>> Do każdej liczby całkowitej "c" można dołączyć część ułamkową 0,(9)
>> a więc liczba całkowita o nazwie oo po dodaniu części ułamkowej
>> jest o 1 większa

> Dobrze że zgadzasz się że 0,(9) = 1

0,(9) to długość odcinka 1 w którym brakuje punktu brzegowego.
Odcinek bez brzegu ma długość rzeczywistą równą 1.

> ale oo nie jest liczba całkowitą.

Liczba oo jest tworzona rekurencyjnie algorytmem n+1 rozpoczynając
od 1, nie może więc być ułamkowa, a musi być całkowita.
Innej możliwości nie ma.

>> ~~~~~~~~~
>> oo,(9) > oo
>> ~~~~~~~~~

> oo+1 = oo

To Twoje orzekanie bez uzasadnienia prawdziwości sprzeczne
z arytmetyką. W algebrze c,(9) > c dokładnie o wielkość 0,(9)
Potrafisz udowodnić Twój zapis "oo+1 = oo", który bez dowodu
jest zwykłym bełkotem?

>> Nie pytałem Ciebie co wolno a czego nie wolno w teorii, którą
>> nazywasz "matematyka". Pytałem o proporcję:
>> Czy 1 z nieskończoności ma wielkość ZERO czy większą.

> Dąży do zera.

Czy ta nowomowa "Dąży do zera" oznacza, że 1 z nieskończoności
ma wielkość ZERO czy większą?

>> Kwadrat o powierzchni 1 [cm^] zawiera nieskończoną ilość
>> odcinków o długości 1 [cm] tworzących jego pole.
>> Pytanie jest proste:
>> Czy 1 [cm] / 1 [cm^2] ma wielkość ZERO czy więcej od zera?
>> Robakks

> 1 [cm] / 1 [cm^2] = 1 [cm^-1]

No widzisz. 1 bok podzielony przez nieskończoną ilość boków
nie ma wielkości zerowej. JEST w innym wymiarze, ale nie jest ZERO.
Edward Robak* z Nowej Huty
~>°<~
miłośnik mądrości i nie tylko :)

› Pokaż wiadomość z nagłówkami


37. Data: 2010-02-07 13:24:05

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "zdumiony" <z...@j...pl> szukaj wiadomości tego autora

Użytkownik "Robakks" <R...@g...pl> napisał w wiadomości
news:hkmdo8$6p2$1@inews.gazeta.pl...
> 0,(9) to długość odcinka 1 w którym brakuje punktu brzegowego.
> Odcinek bez brzegu ma długość rzeczywistą równą 1.

Czyli 0,(9) = 1

>> ale oo nie jest liczba całkowitą.
> Liczba oo jest tworzona rekurencyjnie algorytmem n+1 rozpoczynając
> od 1, nie może więc być ułamkowa, a musi być całkowita.
> Innej możliwości nie ma.

A dlaczego nie algorytmem n+0.3 ?

>> oo+1 = oo
> To Twoje orzekanie bez uzasadnienia prawdziwości sprzeczne
> z arytmetyką. W algebrze c,(9) > c dokładnie o wielkość 0,(9)
> Potrafisz udowodnić Twój zapis "oo+1 = oo", który bez dowodu
> jest zwykłym bełkotem?

Nieskończoność to nie jest liczba naturalna! Nieskończoność oznacza nieskończenie
wiele. Pokazałem że nawet gdy do Twojej liczby 1'1 doda się jeden to ta liczba się
nie zwiększy. Gdy nieskończoność jest granicą n+1 to dalsze dodawanie i odejmowanie
jedynki niczego nie zmienia. Tak działa przejście do granicy.

>> Dąży do zera.
> Czy ta nowomowa "Dąży do zera" oznacza, że 1 z nieskończoności
> ma wielkość ZERO czy większą?

Gdyby można było powiedzieć o 1/oo (czy 2/oo) to byłoby zero a nie więcej, ale to nie
jest ścisłe, należy mówić o granicy.

>> 1 [cm] / 1 [cm^2] = 1 [cm^-1]
> No widzisz. 1 bok podzielony przez nieskończoną ilość boków
> nie ma wielkości zerowej. JEST w innym wymiarze, ale nie jest ZERO.
> Edward Robak* z Nowej Huty

Nie było tu dzielenia jeden przez nieskończoność tylko jeden przez jeden i jedną
wielkość fizyczną przez inną, równie dobrze można by dzielić metry przez sekundy
1 [m] / 1 [s] = 1 [m/s]

› Pokaż wiadomość z nagłówkami


38. Data: 2010-02-07 13:28:21

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "zdumiony" <z...@j...pl> szukaj wiadomości tego autora

Użytkownik "Robakks" <R...@g...pl> napisał w wiadomości
news:hkmdo8$6p2$1@inews.gazeta.pl...
> Liczba oo jest tworzona rekurencyjnie algorytmem n+1 rozpoczynając
> od 1, nie może więc być ułamkowa, a musi być całkowita.
> Innej możliwości nie ma.

> Potrafisz udowodnić Twój zapis "oo+1 = oo", który bez dowodu
> jest zwykłym bełkotem?

Zwykła liczba jest jak punkt na osi, nieskończoność jest jak cała oś bez początku i
końca.

› Pokaż wiadomość z nagłówkami


39. Data: 2010-02-07 17:59:38

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "zdumiony" <z...@j...pl> szukaj wiadomości tego autora

Użytkownik "Robakks" <R...@g...pl> napisał w wiadomości
news:hkmdo8$6p2$1@inews.gazeta.pl...
> No widzisz. 1 bok podzielony przez nieskończoną ilość boków
> nie ma wielkości zerowej. JEST w innym wymiarze, ale nie jest ZERO.
> Edward Robak* z Nowej Huty

Czy zero geometryczne zapisuje się +0 i jest większe od zera ?

› Pokaż wiadomość z nagłówkami


40. Data: 2010-02-07 18:56:07

Temat: Re: Robakks gada ze zdumionym o 1'0
Od: "zdumiony" <z...@j...pl> szukaj wiadomości tego autora

Użytkownik "Robakks" <R...@g...pl> napisał w wiadomości
news:hkmdo8$6p2$1@inews.gazeta.pl...
> No widzisz. 1 bok podzielony przez nieskończoną ilość boków
> nie ma wielkości zerowej. JEST w innym wymiarze, ale nie jest ZERO.
> Edward Robak* z Nowej Huty

Jaka jest arytmetyka zera arytmetycznego a jaka zera geometrycznego?

› Pokaż wiadomość z nagłówkami


 

strony : 1 ... 3 . [ 4 ] . 5 ... 10 ... 19


« poprzedni wątek następny wątek »


Wyszukiwanie zaawansowane »

Starsze wątki

zagadka na piątkowe popołudnie
bez WOKa ani kroka...
Re: Robakks gada ze zdumionym o 1'0
O SOBIE
Dojrzałość emocjonalna boli!

zobacz wszyskie »

Najnowsze wątki

Wspierajmy Trzaskowskiego!
I co? Jest wojna w Europie, prawda?
Sztuczna Inteligencja
Ucieczka z Ravensbruck - komentarz
I pod drzwiami staną i nocą kolbami w drzwi załomocą

zobacz wszyskie »